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1. An evergreen problem

When to stop adding PLS components???
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State of the art of commercial software

Tony Davies, Analytical computing survey
Spectroscopy Europe, 16 (2004) 26-27

“Back in 1998 more advanced chemometric tools were being made 
available as standard in spectrometer control packages. This had, 
however, raised fears that the inherent dangers of over-fitting 
data were not being sufficiently addressed in order to help 
inexperienced spectroscopists handle the additional computing 
power that was becoming available. I must admit that the work of
my co-column Editor in pushing for “Good Chemometrics Practice” 
has hopefully raised awareness in the community of the potential
pitfalls in using these packages without due consideration, but I 
personally have not been aware of clear unambiguous automated 
warnings starting to appear when data was being overfitted.” 
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Current approach to component selection: validation

Comparison of model predictions with known reference values 
of validation objects for increasing number of PLS components:

Ideally, the optimum number of components minimizes RMSEP 
(root mean squared error of prediction).
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Schematic view of the variance-bias trade-off
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Common validation approaches for PLS

External validation:
independent validation set is best (“test = best”), but it requires a 
lot of data and is therefore rather “wasteful”.

Internal validation:
cross-validation is “economic”, but

it tends to select too many components (over-fit);
it can fail for small designed data sets, e.g. in sensory or 
quantitative structure activity relationship (QSAR) modeling;
it can fail when a model requires updating for new sources of 
variation and one needs to decide about additional PLS 
components (not further considered).

leverage correction is a quick-and-dirty alternative to cross-
validation that is even more likely to over-fit the data.
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Over-fitting tendency of cross-validation

Well-documented in the statistics literature.

Example of a chemometrics paper:
Q.-S. Xu and Y.-Z. Liang
Monte Carlo cross validation
Chemometrics and Intelligent Laboratory Systems, 56 (2001) 1-11
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Cross-validation and designed data

Cross-validation is a re-sampling technique like the jack-knife 
and the bootstrap.

An underlying assumption for correct use is therefore that the 
calibration data at hand are sampled from a population, i.e. not 
designed.

The consequences can be particularly grave for relatively small 
designed data sets.
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QSAR application: hexapeptides synthesized according 
to a molecular design (16 objects and 18 X-variables)
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Discussion

Cross-validation does not give a hint about the optimum number 
of PLS components.

Leverage correction yields a global minimum RMSEP for 8 
components. However, it is doubtful whether 16 objects can span 
an 8-dimensional space. This model is likely to over-fit the data.

A “soft” decision rule (“plateau”) suggests 4 components. 
However, the associated RMSEP estimate is considerably higher 
than the one obtained for the global minimum (1.72 vs. 1.07).

How to decide???
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Conclusion

 
Each validation approach has serious 

drawbacks… 
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Obvious research question

 
… is it possible to select PLS components 

without relying on validation? 
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Requirement

 
An approach is required that makes 

minimum assumptions about the data: it 
must be data-driven. 
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A so-called randomization test is suitable 

here. It has been successfully applied to 
solve related problems in chemometrics. 

 

2. The proposed solution
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The main result

 
One obtains a p-value for each component 

that is added to the PLS model. 
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More details and applications

S. Wiklund, D. Nilsson, L. Eriksson, M. Sjöström, S. Wold and 
N.M. Faber
A randomization test for PLS component selection
Journal of Chemometrics, submitted.

N.M. Faber and R. Rajkó
How to avoid over-fitting in multivariate calibration – the 
conventional validation approach and an alternative
Spectroscopy Europe, submitted.

Request: nmf@chemometry.com
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3. Example data set
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Results for randomization test

8265.13

5850.362

2.24321
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Discussion

Support for (at most) 4 PLS components. This coincides with the 
beginning of the “plateau” for leverage correction. The agreement 
with leverage correction was poor, however, for other data sets 
(not shown).

Component 1 is not significant while higher-numbered 
components are. The natural behavior is that significant 
components are followed by the non-significant ones. This 
phenomenon has been observed for spectral data sets that 
require pre-treatment to remove irrelevant X-variation (not further 
investigated; historical data set).
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4. Concluding remarks

One has to accept as a fact that correct and/or adequate 
validation is not always feasible. In the context of PLS 
component selection, the proposed method intends to fill a gap.

The randomization test can be used in stand-alone fashion, as 
shown, or in combination with e.g. cross-validation if the RMSEP 
curve does not exhibit a clear minimum and one has to resort to 
“soft” decision rules like “first local minimum” or “plateau”.
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