Further experience with a novel randomization test for PLS component selection

Klaas Faber Chemometry Consultancy <u>www.chemometry.com</u>

Outline

1.	An evergreen problem	2
2.	The proposed solution	15
3.	Example data set	18
4.	Concluding remarks	21
5.	Acknowledgments	22

1. An evergreen problem

State of the art of commercial software

Tony Davies, Analytical computing survey Spectroscopy Europe, **16** (2004) 26-27

"Back in 1998 more advanced chemometric tools were being made available as standard in spectrometer control packages. This had, however, raised fears that the **inherent dangers of over-fitting data were not being sufficiently addressed** in order to help inexperienced spectroscopists handle the additional computing power that was becoming available. I must admit that the work of my co-column Editor in pushing for "Good Chemometrics Practice" has hopefully raised awareness in the community of the potential pitfalls in using these packages without due consideration, but I personally have not been aware of clear unambiguous automated warnings starting to appear when data was being overfitted." Current approach to component selection: validation

Comparison of model predictions with known reference values of validation objects for increasing number of PLS components:

Ideally, the optimum number of components minimizes RMSEP (root mean squared error of prediction).

Schematic view of the variance-bias trade-off

Common validation approaches for PLS

External validation:

independent validation set is best ("test = best"), but it requires a lot of data and is therefore rather "wasteful".

Internal validation:

- cross-validation is "economic", but
 - it tends to select too many components (over-fit);
 - it can fail for small designed data sets, e.g. in sensory or quantitative structure activity relationship (QSAR) modeling;
 - it can fail when a model requires updating for new sources of variation and one needs to decide about additional PLS components (not further considered).
- leverage correction is a quick-and-dirty alternative to crossvalidation that is even more likely to over-fit the data.

Over-fitting tendency of cross-validation

Well-documented in the statistics literature.

Example of a chemometrics paper:

 Q.-S. Xu and Y.-Z. Liang Monte Carlo cross validation *Chemometrics and Intelligent Laboratory Systems*, **56** (2001) 1-11

Cross-validation and designed data

- Cross-validation is a re-sampling technique like the jack-knife and the bootstrap.
- An underlying assumption for correct use is therefore that the calibration data at hand are sampled from a population, i.e. not designed.
- The consequences can be particularly grave for relatively small designed data sets.

QSAR application: hexapeptides synthesized according to a molecular design (16 objects and 18 X-variables)

Discussion

- Cross-validation does not give a hint about the optimum number of PLS components.
- Leverage correction yields a global minimum RMSEP for 8 components. However, it is doubtful whether 16 objects can span an 8-dimensional space. This model is likely to over-fit the data.
- A "soft" decision rule ("plateau") suggests 4 components. However, the associated RMSEP estimate is considerably higher than the one obtained for the global minimum (1.72 vs. 1.07).

• How to decide???

Conclusion

Each validation approach has serious drawbacks...

Obvious research question

... is it possible to select PLS components without relying on validation?

Requirement

An approach is required that makes minimum assumptions about the data: it must be data-driven. 2. The proposed solution

A so-called randomization test is suitable here. It has been successfully applied to solve related problems in chemometrics.

The main result

One obtains a p-value for each component that is added to the PLS model.

More details and applications

 S. Wiklund, D. Nilsson, L. Eriksson, M. Sjöström, S. Wold and N.M. Faber
A randomization test for PLS component selection
Journal of Chemometrics, submitted.

N.M. Faber and R. Rajkó

How to avoid over-fitting in multivariate calibration – the conventional validation approach and an alternative *Spectroscopy Europe*, submitted.

Request: nmf@chemometry.com

3. Example data set

Results for randomization test

Comp	p-value (%)	Comp	p-value (%)
1	32	4	2.2
2	0.36	5	58
3	5.1	6	82

Discussion

- Support for (at most) 4 PLS components. This coincides with the beginning of the "plateau" for leverage correction. The agreement with leverage correction was poor, however, for other data sets (not shown).
- Component 1 is not significant while higher-numbered components are. The natural behavior is that significant components are followed by the non-significant ones. This phenomenon has been observed for spectral data sets that require pre-treatment to remove irrelevant X-variation (not further investigated; historical data set).

4. Concluding remarks

- One has to accept as a fact that correct and/or adequate validation is not always feasible. In the context of PLS component selection, the proposed method intends to fill a gap.
- The randomization test can be used in stand-alone fashion, as shown, or in combination with e.g. cross-validation if the RMSEP curve does not exhibit a clear minimum and one has to resort to "soft" decision rules like "first local minimum" or "plateau".

5. Acknowledgments

Testing:

- Susanne Wiklund, David Nilsson, Lennart Eriksson, Michael Sjöström and Svante Wold (Umeå University and Umetrics)
- Jose Andrade (University of a Corunna)
- Douglas Rutledge (Institut National Agronomique)
- Randy Pell (Dow Chemical)
- Lin Zhang (Pfizer)
- Scott Ramos (Infometrix)
- Implementation:
 - Chris Brown (InLight Solutions)
 - Alejandro Olivieri (Universidad Nacional de Rosario)